PHYSICAL REVIEW E VOLUME 57, NUMBER 2 FEBRUARY 1998

Collective motion occurs inevitably in a class of populations of globally coupled chaotic elements
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We discovered numerically a scaling law obeyed by the amplitude of collective motion in large populations
of chaotic elements. Our analysis strongly suggests that such populations generically exhibit collective motion
in the presence of interaction, however weak it may be. A phase diagram for the collective motion, which is
characterized by peculiar structures similar to Arnold tongues, is obtdi8&063-651X98)06502-7

PACS numbd(s): 05.45+b, 05.70—a, 05.90+m

[. INTRODUCTION maps with all-to-all coupling. The individual elements are
then under the influence of a common internal field, which
Systems consisting of large populations of interacting dy-may be referred to as a mean fidls]. We assume that a
namical elements are widely distributed in nature from com-ingle isolated element evolves accordingXq. ;=f(X,),
munities of ants to biological cell assemblies and neural netwheren designates discrete time steps. Under the interaction
works. Many such populations are similar in the respect thathrough the mean fielti,,, theith element is then assumed
they exhibit various kinds of collective behavior. One pos-to evolve as
sible approach to the mathematical study of such collective _ _
behavior is to concentrate on certain idealized models such X0 =f(X)+Kh,, 1)
as interacting limit cycles and chaotic maps. An abundance
of literature has been devoted to the study of these modelshereK is the coupling strength. In this paper we consider
[1-9]. It is suggested in some foregoing studiés-9] that a  the situation in which is a tent map
population of this type as a whole exhibits low-dimensional
behavior. This seems to be true even when the individual
elements appears to be mutually uncorrelated, a situation in
which it would seem that the population could only be re-
garded as a dynamical system of extremely high dimensiorand the mean fielt,, is defined as
It still remains unclear whether such collective behavior
could be understood in terms of low-dimensional dynamical
systems. h,=—,
Without directly attacking the above-stated problem, we !
take in the present paper a slightly different approach i
which we focus on a nonspecific property of collective mo . ”
tion, a long-time average oF; the ar%plri)tud)e/ of collective mo-2ndK in addition to the total number of elemerits Each
tion. We find that this approach, with which we intentionally (€Nt map has a band splitting poat= V2 and we thus stipu-
avoid addressing specific features of collective motion, turndate thata satisfiesy2<a<2. It is thereby ensured that the
out to be extremely useful. As model systems we have chdPopulation will never split into subpopulations. If the system
sen globally coupled tent maps because these systems a?rlge_N is a finite, this f|_n|teness becomes the source of fluc-
particularly well suited for detailed numerical analysis. Us-tuations of the mean field. Such an effect may obscure pure
ing these maps, we have discovered a scaling law charactefollective motion. Thus we work with the limit of larde. In
izing the amplitude of collective motion that holds for a par- fact, we confirmed that finite-size effects can be regarded as
ticular series of parameter values. Further, we argue on thoise acting on the pure collective motion. Ré-<, the
basis of numerical evidence that this type of collective mo-Population dynamics of GCMs can be described by the
tion should occur generically if an interaction exists, no mat-Frobenius-Perron equatigti1] for the distributionp(X):
ter how weak this interaction may be. Finally, a phase dia-
ram for the collective motion is obtained and the existence , , ,
?n it of peculiar structures similar to Arnold tongues with an(X)—f SX=T(X') = Khn)pa(X)dX",  (4)
various scales is confirmed.

a—1
X =—alX|+ —— @

| B~

N
>, X)), (3)

P

_nThus our system is characterized by the two parameters

hn:f F(X")pn(X")dX". ®)
Il. MODEL: GLOBALLY COUPLED TENT MAPS

Globally coupled map&8GCMs) are given by an assembly We worked out a numerical scheme for the exact integration
of N elements whose behavior is determinedibydentical  of Egs.(4) and(5) whose precision is limited only by round-
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FIG. 1. Two types of collective motion a&=gs are displayed
by the return map ofi,,. (a) For K=0.1, we find a torus represent-
ing quasiperiodic motion(b) For K= 1.0, the return map indicates
more complicated toruslike motion possibly accompanied by fine
structure.
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off errors. Our scheme is almost the same as that propose
by Morita [10], although these numerical schemes were de-
veloped independently. We have confirmed that collective . ) .

. o . FIG. 2. Amplit f collect tiofr for tw | f
motion appearing in the system described by Edjsand(5) G mplitude of collective motiof vs m for two values o

. ! . L ) . Here m=—log,(2—a). There are several hills and valleys,
is almost independent of the initial distribution. For this rea- Ge(2—2) y

ical its in thi h whose numbers increase Ksdecreases. Some golden and silver
son we present numerical results in this paper that were Ol?/'alues, denoted by, ands;, are also displayed for reference.

tained using only a single initial distribution, uniform over
the interval[ fof(0),f(0)]. o . .
infinity asa— 2. The figure shows the range of many hills of
lIl. COLLECTIVE MOTION IN GLOBALLY COUPLED F, which we call a “hilly structure.” As the value oK Is
TENT MAPS decreased_, the number_ of the hills becomes larger, Whl|e the
average size of each hill becomes smaller. For laegére.,

In some previous worki7,11], it has been argued that the larger m), the hilly structure is difficult to discern in this
model constituted by Eq$1) and(2) does not exhibit col- figure, but its persistence can be confirmed by magnifying
lective motion. However, our careful analysis yields a con-the scale. The hilly structure seems to exist for arbitrarily
tradictory conclusion. Collective motion can be observedsmall values ofK. Furthermore, based on this figure, we
through the dynamics of the order paramétegiven by Eq.  expect that for a given value &€, collective motion exists
(5). Figures 1a) and Xb) are return maps df,. There we for almost alla. These points will be discussed in further
see that the fluctuation &f, undergoes quasiperiodic motion detail below.
for small K, but for largerK it displays more complicated
motion possibly with fine structure. Roughly speaking, larger
K values results in more complicated collective behavior. V. GOLDEN AND SILVER VALUES OF PARAMETER a

The observed collective motion is similar to that found in We find that a particular series of parameter values of
other modeld6—8|, except that the scale of the collective 12], which we caIFI)“ olden values.” pla a crucial role in
motion for the present model is much smaller. Because he ;‘ormation of sucr? a hill structijrep V>\//e find in Sec. VI
this smallness, the previous workg,11] have failed to de- y . L : )

. : that these parameter values are situated in the middle of each
tect the collective motion for the present model. Based Orhill for sufficiently small values oK. Some examples are
their conclusion that collective motion does not exist herei dicated in Fi g ith th tai " Wh 'p'd i
they conjectured that the presence of window structures foprolcated in Fig. < wi € notatiogs—g;. ¥vhena Is iden
the elementsgwhich tent maps never possesse necessary tical to one of the golden valu_es, one |so.lat(.ed tent map pos-
for the occurrence of collective motion, but our results showsSSS€s the property that a trajectory beginning at the @eak
this is not the case. of the tent map returns t€ after p steps. We denote a
golden value defined in this way &g . Incidentally, we use
the term “golden value” because the valgg equals the
golden mean.

We refer to another special series of parameter valuas of

We concentrate on the amp“tud.'eof the Co”ective mo- as ‘“silver values.” These are associated with the ValleyS
tion without going into any detailed structure of the dynam-between neighboring hills, as argued in Sec. VIII. For in-

IV. PARAMETER DEPENDENCE OF THE COLLECTIVE
MOTION: HILLY STRUCTURE

ics. We have stance, the silver values—s; are indicated in Fig. 2. When
a is identical tos,,, a trajectory beginning & falls into a
F=\((h,—(h.))?), (6) fixed point of the tent map aftgy steps. Golden and silver

values exist densely if we allow to take all natural number
where( ) represents a long-time average. In Fig. 2 the devalues, while they occupy only a vanishing measure on the
pendence ofF on a is shown for two values oK. The line of a. We note thaig, ands, are generally not unique
horizontal axis representsn=—log,(2—a), which is a because of the multiplicity op-periodic orbits, whose num-
monotonically increasing function & on [0,2], tending to  ber increases almost exponentially withDespite this nonu-
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FIG. 4. Widths of the hills around a few key golden values.
Here the hill width vs IK is shown for five golden valueg, (p
=3-7) whose values are the same as those in Fig. 3. For each
golden value, we find a good correspondence between the line here
and that in Fig. 3.
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FIG. 3. Scaling ofF with K. HereKF vs 1K is shown for five  representative of this hill. We call this a key golden value. In

golden valueg,, p=3-7. The values of, are the same as those order to define key golden values, we studied the growth of

in Fig. 2. The data clearly exhibit the linear dependence ofthe width of hills with the decrease d&f. Figure 4 shows

logio(KF) on 1K. how the widthW of the hill around a given golden value
changes withiK 1. The widthw around a giveny, is defined

niquenessgy(sp) is used below to represent a single goldenpy W= |a, —ag|, wherea, andag are the two values af on

(silver) value. either side ofg, such that the amplitudE ata=a, anda
=ag s half of F(gp). The golden values chosen here are the
VI. SCALING LAW OF COLLECTIVE MOTION same ones as in Figs. 2 and 3. In Fig. 4 we see Wat
AT GOLDEN VALUES behaves as a function & similar to that in Eq.(7). Actu-

ally, the widthW for a giveng, is proportional toKF cal-
culated for the samg,,, as long aK is sufficiently small.
This implies that the hill narrows down to a point, corre-
sponding toa=g,. Based on this relation, we define key
golden values of a given hill that exists at a givg as
KF~e /K, @) follows: With the decrease df from K, the width of a hill
narrows down to a single point according to the growth law
wherea is a positive constant depending on the golden valfor W. The value ofa for this single point is that of the key
ues in question. For any golden value, the above scalingolden value of this hill. The definition of key golden values
form seems to hold as long &sis sufficiently small. In Fig.  Will be refined as golden values displaying the scaling law
3 the relation betweeKF andK ! is displayed for those (7) for values ofK smaller tharKo.
golden values that are situated in the middle of some repre- The formation of the hills may roughly be understood
sentative hills in Fig. 2. The formula in E(7) reveals some from the following argument. At a golden valug,, the
important properties of the collective motion. First, the col-invariant measure for a single map, i.g(X) at the equilib-
lective motion persists even #—0. Second, the observed fium solution of the Frobenius-Perron equation wik0,
quasiperiodic motion does not appear through the converftas the rather simple forfi2] of a p—2 step function, as
tional route of Hopf bifurcation. This follows from the fact displayed in Fig. fa). As a deviates slightly fromg,, the
that if the quasiperiodicity were due to a Hopf bifurcation,

We now consider the collective motion as a function of
the coupling strengtK, with a confined to golden values.
We found numerically that the amplitudre of the collective
motion obeys the law

then we would find thaF~|K—K_| above a bifurcation @) 15 . (b) 15 .
pointK.. This is clearly in contradiction with Eq7). In our K=0 K=0.1
study we could not even find an indication of a bifurcation. 1wl 10l
Third, the simple relation in Eq.7) survives even when the X o
collective motion becomes more complicated. Note that dif- < <

. . . . . 05 H 05
ferent modes of collective motion, as illustrated in Fige) 1 ’_
and Xb), lie on a common line of Fig. 3. o . 0 .

-0.5 ; 0.5 -0.5 )0( 0.5

VII. FORMATION OF A HILLY STRUCTURE

. N FIG. 5. (@ Invariant measure(X) and (b) snapshot of the
The appearance of a hilly structure, seen in Fig. 2, can bﬁistribution pn(X) at a certain time step, wherea is set at the

understooq from two arguments concerning hills and valleysyg)den valuegs. () The invariant measure is given by a three-step
The following discussion regarding hills based on Ef).  fynction. (b) The instantaneous shape of the distribution Kor
partially explains how collective motion comes to character-—o.1 is similar to the invariant measure, except that it is accompa-
ize almost all values o, not just the golden values. nied by peaks with finite widths that appear near each corner of the

At a given value oK each hill ofF contains a number of steps. The snapshots pf(X) for all values ofa in the neighbor-
golden values. One of these golden values is found to baood ofgs have a similar property.
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change of the invariant measure remains small, although 442
there may appear some fine structure. When a weak interac K=0.8 K=0.8
tion is switched on, the solutiop,(X) of Egs.(4) and (5)
with a=g, continues to assume a shape quite similar to the b
invariant measurg(X) mentioned above, but it is accompa- AN
nied by intermittent peakksee Fig. )] whose widths are AN
roughly given byKF. The situation remains almost the same N
whena differs slightly fromg,,. If the effect of these peaks w4t N\ - -
on the amplitude of the collective motion is more important ~
than the change in the invariant measure caused by a smal N
deviation ofa from g,, the statistical averagé will be .
insensitive to the value & aroundg, . If the deviation ofa 107 \
from g, becomes too large, however, the corresponding L
will be dominated by the influence of other golden values N\
corresponding to other hills. 10" + + 3, £ 4 2 -
Hills formed in the manner described above are consistent 10 10 -10 710 - 10 10 10 10
with hills obeying the growth relation of the widtW (see Aa

Fig. 4. Further, the above reasoning applies to every golden £ g ampiitude of collective motiof near a silver valus,

value. Thus every golden value can be considered as a kgjsplayed on a logarithmic scale, whexa=a—s,. The picture on
golden value around which its own hill is formed. This con- the |eft is for values o smaller thars,, while that on the right is

clusion may appear to be inconsistent with the fact that in @or a larger thans;. For smallerk, F=|Aal, so thatF decays to
given hill there are an infinite number of golden values. Ac-zero asa—s,. On the other hands remains finite for largeK over
tually, for a givenK, most golden values in a given hill are the range ofa in this figure.

not key golden values. We have found that around such a K

value, the amplitude F for these golden values does not obey IX. MERGING OF HILLS

the scaling law of F. This will be discussed in Sec. IX. It is Fi 6 also indicates that th I di f f
now clear that collective motion is not confined only to val-_. . Igure © also Indicates that tne valleys disappear 1or sut-
ficiently large values oK. For each silver value, we find a

ues corresponding to golden values. It occurs over the inter- > - : ;
vals corresponding to hills existing around these golden vaI-Crltlcal valueK for the disappearance of the correspondmg
valley. WhenK exceeds such ., a valley that existed at a

K=0.7

T
P

ues. - : .
certain silver value up t& =K, suddenly disappears. This
occurs because two hills lying on either side of this silver

VIIl. COLLECTIVE MOTION IS DOMINANT: PROPERTY value merged into one & =K. As a result, the amplitude

AROUND VALLEYS F at this value ofa exhibits a sudden increase. As described
. N above, each hill possesses a key golden value. After the
The hilly structure seen in Fig. 2 can be understoad bymerging of two hills, one of the two key golden values char-

analyzing the structure oF in the valleys between two - ; - ;
; 2 : ) i acterizing the previously existing hills, say, , ceases to be
neighboring hills. From this analysis we are able to conclude 9 P y g %,

that collective motion occurs generically in theK plane. & key golden value, while the other persists.l As a resulkthe
We specifically investigate the parameter dependenéeinf ~d€Pendence of ata=g,, changes and typically comes to
valleys. As is seen from Fig. 2, we find that some silverbehave as illustrated in Fig. 7. We see in this figure that the
values lie precisely at the minimum points 6fin the val-

leys. Figure 6 shows that when the valueadf near a silver 1 r r
value s,, we obtain the following relation for sufficiently 42
small values oK:

Foela—s|f  (B=1). )

It is clear from this relation that collective motion disappears
only at the pointa=s, [13]. This relation seems to hold for
any silver value when the value &f is sufficiently small.
This fact strongly suggests that the total measure of values c()jfiﬂer only slightly. The plotting method is the same as that for Fig.

a at which collective motion does not exist _is vanis_hingly The value ofy, is the same as that given in Fig. 2. Each golden
small because the total measure corresponding to silver va\?/

. . . . alue is regarded as a key golden value, widlds sufficiently
uesis van!shlng, although they exist de”$e'y on the_ liree. of small. However, only the collective motion at one golden vajue
The remaining values o& are characterized by hills that i characterized by the same scaling law in both the skaid
extend from key golden values with widths that increase W'thargeK regions. Thek ~* dependence oKF at the other golden
K. Hence the occurrence of the collective motion is domi-yajye g,; changes and this dependence comes to resemble that at
nant over the parameter spaceafBecause of the scaling g,. This implies that the hill associated wit, absorbs the hill
law existing at golden values, this situation holds even forassociated witly;;. Thus the golden valug, continues to be a key
vanishingly small values of. golden value, whileg,; ceases to be such.

FIG. 7. KF vs K™ for two golden values whose values af
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; . in m-K~! space, wherem=—log,(2—a) (restricted in 2.8&m
R o <3.22). The value of thg, in this figure is the same as that in Fig.
. ) 2. Each domain filled with black has been determined from the
4 10" 102 10 10 1 calculation of the hill width associated with the corresponding
Aa golden value. The golden values represented heregareith p

=<11. The neighboring domains overlap for larger value«ofA

FIG. 8. The pointK, at which the minimum point in the valley precise phase diagram split into an infinite number of domains
closest to the key golden valug, vanishes is investigated. Here could be imagined as an extension of this figure.
Aa=a—g,. The value ofg, is the same as that given in Fig. 2.
Note that the horizontal scale is logarithmic. The picture on the lefistructure consists of a series of hills and valleys. Only at a
is for the values of smaller thang,, while that on the right is for  minimum point ofF in each valley, collective motion disap-
larger values. When a minimum situated at the silver value disappears. Thus the hilly structure implies that under a given
pears at som& =K, the width of the hill associated withy  coypling strengthk the collective motion occurs inevitably
becomes expanded. The valueskqf for those valleys that disap- for almost all values of.. Furthermore, the following prop-
pear successively show a logarithmic dependencaamilthough — grieg for the collective motion are now clear: There is a

this figure ignores many other valleys that are actually present, Wgcaling law for the amplitud&, a growth law for the hill
believe that the manner in which valleys disappear successively is '

consistent with the variation of the hill width witK shown in width W, ‘.”md a successive mer'glng of hills resulting in a
Fig. 4 decrease in the number of the hills and hence the number of

key golden values. Clearly these features are interrelated.
K dependence df(g,) is maintained, while that oF(g;7)

changeg gboch, where it comes to exhibit & depen- X. PHASE DIAGRAM

dence similar td=(g,).

The merging of two hills leads to a sudden expansion of We now consider a phase diagram of collective motion in
the width of one of the hills, accompanied by the disappearthea-K ~! plane from the viewpoint of the amplitude For
ance of the other. If a hill associated with some key goldereach golden valug,, we define a phase as the region of a
valueg, successively absorbs the neighboring hills with thehill (defined by values ofF greater than some threshold
increase oK, then the widthw of this hill also grows suc- valueFy,) associated with a certaigy,. Here the definition
cessively. On the other hand, we have already seen in Fig. 4 meaningful only ifg, represents a key golden value. Since
a growth law forW. These observations suggest that thegolden values exist densely, such a diagram will be split into
values of K. characterizing the disappearance of valleysan infinite number of domains 86— 0, each reducing to a
around silver values should be correlated with our growthsingle point corresponding to a golden value. The extension
law for W. In the case of Fig. 8, the golden valgg persists of each domain becomes larger with the increas& pfis
as a key golden value over a wide range&kofwWe calculated implied by Eq.(7), and this necessarily results in the succes-
the values oK for a series of silver values. Each of these sive merging of domains, leaving only a few for sufficiently
silver values was chosen in such a way that in a certain randargeK. Thus our phase diagram resembles that for the phase
of K it lies at the minimum point between the hill associatedlocking between oscillators. The latter is also characterized
with g, and a neighboring hill. In fact, there should exist by the merging and splitting of domains, in this case syn-
many more silver values of this kind for a givan than  chronized domains, referred to as Arnold tongues. We note,
those displayed in this figure. We see from this figure thahowever, there is one property of our phase diagram that
the value ofK for a given silver value depends on the dis- distinguishes it from that in the case of phase locking. In the
tance of this silver value frorg, and that this dependence is present case, in the;,—0 limit, the domains of collective
consistent with the growth law faW seen in Fig. 4. In many motion comprise all but a measure O set of valuea,aven
cases, merging occurs between hills of vastly different sizedor vanishingly weak coupling.

In this case, the collective motion characterizing the smaller In Fig. 9 we show a blowup of the phase diagram that
hill seems to be replaced suddenly by that for the larger onezontains only those domains of collective motion ggrwith

In such cases, the hill width may appear to grow almosp=<11. The numerical procedure for obtaining this picture
continuously. essentially follows that for Fig. 4. We determined the domain

From our study presented so far, the hilly structure of thefor eachg, with a givenK first, displaying it as a painted
amplitudeF of the collective motion can be understood. Thisregion ofa. We then did the same for variods, thereby
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producing Fig. 9. Note that the domains separated for a givetude of this collective motion is proportional to the coupling
K correspond to distinct hills with distingt,. As expected, strength[11]. An analytical study[15] also supports this

a pair of neighboring domains merge at a certain valuk of idea. These suggests the existence of a certain scaling law of
at which a valley disappears. Thus the number of separatdé that implies the qualitative applicability of our argument.

domains decreases with the increasekof After several Collective motion with a quasiperiodic property is also
merging events, we are left with only one painted domainobserved in spatially extended systefi$ Since the GCM
associated withy,. is an idealized model of a long-range coupled system, it does
not take into account anything resembling spatial extension.
XI. DISCUSSION: ANY UNIVERSALITY CLASS? We wish to be able to find a way to include the effects of

spatial degrees of freedom in the description of collective

The foregoing arguments suggest that collective motiofiotion. It is hoped that the discovery presented here will be
Ooccurs generica”y fOI’ arbitrarily Weak Coupling. SUCh a rE're|evant to SUCh Spa‘“a”y extended systems a|so'
sult seems to be closely related with some global properties \we have concentrated on the amplitudeof the collec-
of the individual maps such as the topological arrangemengye motion without going into its phase-space structure. The
of golden values. It is our conjecture that the same concluscaling relation discovered for this nonspecific quantity holds
sion holds for such globally coupled unimodal maps satisfypyer a wide range of parameter values for which the type of
ing [f'(X)[>1 for any X. Although not reported in the collective motion changes in various ways. Based on this
present paper, we also confirmed that a similar scaling lawoint, we suspect that the collective motion discussed in the
holds for a Variety of mean fleld’ﬁ] . From these studies it is present paper m|ght possess quite unusual properties not
seen that the analytical approach by Ershov and PoteBlv  shared by conventional low-dimensional dynamical systems.
giVES estimated values &f that are much smaller than those Detailed numerical Study of the nature of various types of

found in the present numerical results. 3 collective motion, which is now in progress, will clarify this
For the case not satisfying the above condition forpgint.

|f'(X)|, for instance, globally coupled logistic maps, the
present argument is expected to be qualitatively applicable
under some restrictions. This is mainly because here golden
values are located in windows and the stability of a periodic
orbit there causes the so-called clustering phenonfiha The authors are grateful to T. Chawanya for helpful dis-
which are beyond the present arguments. On the other handyssions and to Y. Kuramoto, B. Hinrichs, and K. Kaneko
collective motion resembling the present motion is also obfor encouragement and a critical reading of the manuscript.
served for globally coupled logistic maps, where the ampli-This research was supported by JSPS.
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