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Collective motion occurs inevitably in a class of populations of globally coupled chaotic element
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We discovered numerically a scaling law obeyed by the amplitude of collective motion in large populations
of chaotic elements. Our analysis strongly suggests that such populations generically exhibit collective motion
in the presence of interaction, however weak it may be. A phase diagram for the collective motion, which is
characterized by peculiar structures similar to Arnold tongues, is obtained.@S1063-651X~98!06502-7#

PACS number~s!: 05.45.1b, 05.70.2a, 05.90.1m
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I. INTRODUCTION

Systems consisting of large populations of interacting
namical elements are widely distributed in nature from co
munities of ants to biological cell assemblies and neural n
works. Many such populations are similar in the respect t
they exhibit various kinds of collective behavior. One po
sible approach to the mathematical study of such collec
behavior is to concentrate on certain idealized models s
as interacting limit cycles and chaotic maps. An abunda
of literature has been devoted to the study of these mo
@1–9#. It is suggested in some foregoing studies@6–9# that a
population of this type as a whole exhibits low-dimension
behavior. This seems to be true even when the individ
elements appears to be mutually uncorrelated, a situatio
which it would seem that the population could only be
garded as a dynamical system of extremely high dimens
It still remains unclear whether such collective behav
could be understood in terms of low-dimensional dynami
systems.

Without directly attacking the above-stated problem,
take in the present paper a slightly different approach
which we focus on a nonspecific property of collective m
tion, a long-time average of the amplitude of collective m
tion. We find that this approach, with which we intentiona
avoid addressing specific features of collective motion, tu
out to be extremely useful. As model systems we have c
sen globally coupled tent maps because these system
particularly well suited for detailed numerical analysis. U
ing these maps, we have discovered a scaling law chara
izing the amplitude of collective motion that holds for a pa
ticular series of parameter values. Further, we argue on
basis of numerical evidence that this type of collective m
tion should occur generically if an interaction exists, no m
ter how weak this interaction may be. Finally, a phase d
gram for the collective motion is obtained and the existe
in it of peculiar structures similar to Arnold tongues wi
various scales is confirmed.

II. MODEL: GLOBALLY COUPLED TENT MAPS

Globally coupled maps~GCMs! are given by an assembl
of N elements whose behavior is determined byN identical
571063-651X/98/57~2!/1570~6!/$15.00
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maps with all-to-all coupling. The individual elements a
then under the influence of a common internal field, wh
may be referred to as a mean field@5#. We assume that a
single isolated element evolves according toXn115 f (Xn),
wheren designates discrete time steps. Under the interac
through the mean fieldhn , the i th element is then assume
to evolve as

Xn11
~ i ! 5 f ~Xn

~ i !!1Khn , ~1!

whereK is the coupling strength. In this paper we consid
the situation in whichf is a tent map

f ~X!52auXu1
a21

2
~2!

and the mean fieldhn is defined as

hn[
1

N(
j 51

N

f ~Xn
~ j !!. ~3!

Thus our system is characterized by the two parametea
and K in addition to the total number of elementsN. Each
tent map has a band splitting pointa5A2 and we thus stipu-
late thata satisfiesA2,a,2. It is thereby ensured that th
population will never split into subpopulations. If the syste
sizeN is a finite, this finiteness becomes the source of fl
tuations of the mean field. Such an effect may obscure p
collective motion. Thus we work with the limit of largeN. In
fact, we confirmed that finite-size effects can be regarded
noise acting on the pure collective motion. ForN→`, the
population dynamics of GCMs can be described by
Frobenius-Perron equation@11# for the distributionr(X):

rn11~X!5E d„X2 f ~X8!2Khn…rn~X8!dX8, ~4!

hn5E f ~X8!rn~X8!dX8. ~5!

We worked out a numerical scheme for the exact integra
of Eqs.~4! and~5! whose precision is limited only by round
1570 © 1998 The American Physical Society
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57 1571COLLECTIVE MOTION OCCURS INEVITABLY IN A . . .
off errors. Our scheme is almost the same as that propo
by Morita @10#, although these numerical schemes were
veloped independently. We have confirmed that collect
motion appearing in the system described by Eqs.~4! and~5!
is almost independent of the initial distribution. For this re
son we present numerical results in this paper that were
tained using only a single initial distribution, uniform ove
the interval@ f + f (0),f (0)#.

III. COLLECTIVE MOTION IN GLOBALLY COUPLED
TENT MAPS

In some previous works@7,11#, it has been argued that th
model constituted by Eqs.~1! and ~2! does not exhibit col-
lective motion. However, our careful analysis yields a co
tradictory conclusion. Collective motion can be observ
through the dynamics of the order parameterhn given by Eq.
~5!. Figures 1~a! and 1~b! are return maps ofhn . There we
see that the fluctuation ofhn undergoes quasiperiodic motio
for small K, but for largerK it displays more complicated
motion possibly with fine structure. Roughly speaking, larg
K values results in more complicated collective behavior

The observed collective motion is similar to that found
other models@6–8#, except that the scale of the collectiv
motion for the present model is much smaller. Because
this smallness, the previous works@7,11# have failed to de-
tect the collective motion for the present model. Based
their conclusion that collective motion does not exist he
they conjectured that the presence of window structures
the elements~which tent maps never possess! are necessary
for the occurrence of collective motion, but our results sho
this is not the case.

IV. PARAMETER DEPENDENCE OF THE COLLECTIVE
MOTION: HILLY STRUCTURE

We concentrate on the amplitudeF of the collective mo-
tion without going into any detailed structure of the dyna
ics. We have

F[A^~hn2^hn&!2&, ~6!

where^ & represents a long-time average. In Fig. 2 the
pendence ofF on a is shown for two values ofK. The
horizontal axis representsm[2 loga(22a), which is a
monotonically increasing function ofa on @0,2#, tending to

FIG. 1. Two types of collective motion ata5g5 are displayed
by the return map ofhn . ~a! For K50.1, we find a torus represen
ing quasiperiodic motion.~b! For K51.0, the return map indicate
more complicated toruslike motion possibly accompanied by
structure.
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infinity asa→2. The figure shows the range of many hills
F, which we call a ‘‘hilly structure.’’ As the value ofK is
decreased, the number of the hills becomes larger, while
average size of each hill becomes smaller. For largera ~i.e.,
larger m), the hilly structure is difficult to discern in this
figure, but its persistence can be confirmed by magnify
the scale. The hilly structure seems to exist for arbitrar
small values ofK. Furthermore, based on this figure, w
expect that for a given value ofK, collective motion exists
for almost all a. These points will be discussed in furthe
detail below.

V. GOLDEN AND SILVER VALUES OF PARAMETER a

We find that a particular series of parameter values oa
@12#, which we call ‘‘golden values,’’ play a crucial role in
the formation of such a hilly structure. We find in Sec. V
that these parameter values are situated in the middle of
hill for sufficiently small values ofK. Some examples are
indicated in Fig. 2 with the notationg3–g7. Whena is iden-
tical to one of the golden values, one isolated tent map p
sesses the property that a trajectory beginning at the peaC
of the tent map returns toC after p steps. We denote a
golden value defined in this way asgp . Incidentally, we use
the term ‘‘golden value’’ because the valueg3 equals the
golden mean.

We refer to another special series of parameter valuesa
as ‘‘silver values.’’ These are associated with the valle
between neighboring hills, as argued in Sec. VIII. For
stance, the silver valuess4–s7 are indicated in Fig. 2. When
a is identical tosp , a trajectory beginning atC falls into a
fixed point of the tent map afterp steps. Golden and silve
values exist densely if we allowp to take all natural numbe
values, while they occupy only a vanishing measure on
line of a. We note thatgp and sp are generally not unique
because of the multiplicity ofp-periodic orbits, whose num
ber increases almost exponentially withp. Despite this nonu-

e

FIG. 2. Amplitude of collective motionF vs m for two values of
K. Here m52 loga(22a). There are several hills and valley
whose numbers increase asK decreases. Some golden and silv
values, denoted bygp andsp , are also displayed for reference.
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1572 57NAOKO NAKAGAWA AND TERUHISA S. KOMATSU
niqueness,gp(sp) is used below to represent a single gold
~silver! value.

VI. SCALING LAW OF COLLECTIVE MOTION
AT GOLDEN VALUES

We now consider the collective motion as a function
the coupling strengthK, with a confined to golden values
We found numerically that the amplitudeF of the collective
motion obeys the law

KF;e2a/K, ~7!

wherea is a positive constant depending on the golden v
ues in question. For any golden value, the above sca
form seems to hold as long asK is sufficiently small. In Fig.
3 the relation betweenKF and K21 is displayed for those
golden values that are situated in the middle of some re
sentative hills in Fig. 2. The formula in Eq.~7! reveals some
important properties of the collective motion. First, the c
lective motion persists even asK→0. Second, the observe
quasiperiodic motion does not appear through the conv
tional route of Hopf bifurcation. This follows from the fac
that if the quasiperiodicity were due to a Hopf bifurcatio
then we would find thatF;AuK2Kcu above a bifurcation
point Kc . This is clearly in contradiction with Eq.~7!. In our
study we could not even find an indication of a bifurcatio
Third, the simple relation in Eq.~7! survives even when the
collective motion becomes more complicated. Note that
ferent modes of collective motion, as illustrated in Figs. 1~a!
and 1~b!, lie on a common line of Fig. 3.

VII. FORMATION OF A HILLY STRUCTURE

The appearance of a hilly structure, seen in Fig. 2, can
understood from two arguments concerning hills and valle
The following discussion regarding hills based on Eq.~7!
partially explains how collective motion comes to charact
ize almost all values ofa, not just the golden values.

At a given value ofK each hill ofF contains a number o
golden values. One of these golden values is found to

FIG. 3. Scaling ofF with K. HereKF vs 1/K is shown for five
golden valuesgp , p53 –7. The values ofgp are the same as thos
in Fig. 2. The data clearly exhibit the linear dependence
log10(KF) on 1/K.
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representative of this hill. We call this a key golden value.
order to define key golden values, we studied the growth
the width of hills with the decrease ofK. Figure 4 shows
how the widthW of the hill around a given golden valu
changes withK21. The widthW around a givengp is defined
by W5uaL2aRu, whereaL andaR are the two values ofa on
either side ofgp such that the amplitudeF at a5aL and a
5aR is half of F(gp). The golden values chosen here are t
same ones as in Figs. 2 and 3. In Fig. 4 we see thaW
behaves as a function ofK similar to that in Eq.~7!. Actu-
ally, the widthW for a givengp is proportional toKF cal-
culated for the samegp , as long asK is sufficiently small.
This implies that the hill narrows down to a point, corr
sponding toa5gp . Based on this relation, we define ke
golden values of a given hill that exists at a givenK0 as
follows: With the decrease ofK from K0, the width of a hill
narrows down to a single point according to the growth l
for W. The value ofa for this single point is that of the key
golden value of this hill. The definition of key golden value
will be refined as golden values displaying the scaling l
~7! for values ofK smaller thanK0.

The formation of the hills may roughly be understoo
from the following argument. At a golden valuegp , the
invariant measure for a single map, i.e.,r(X) at the equilib-
rium solution of the Frobenius-Perron equation withK50,
has the rather simple form@12# of a p22 step function, as
displayed in Fig. 5~a!. As a deviates slightly fromgp , the

f

FIG. 4. Widths of the hills around a few key golden value
Here the hill width vs 1/K is shown for five golden valuesgp (p
53 –7! whose values are the same as those in Fig. 3. For e
golden value, we find a good correspondence between the line
and that in Fig. 3.

FIG. 5. ~a! Invariant measurer(X) and ~b! snapshot of the
distribution rn(X) at a certain time stepn, wherea is set at the
golden valueg5. ~a! The invariant measure is given by a three-st
function. ~b! The instantaneous shape of the distribution forK
50.1 is similar to the invariant measure, except that it is accom
nied by peaks with finite widths that appear near each corner of
steps. The snapshots ofrn(X) for all values ofa in the neighbor-
hood ofg5 have a similar property.
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57 1573COLLECTIVE MOTION OCCURS INEVITABLY IN A . . .
change of the invariant measure remains small, altho
there may appear some fine structure. When a weak inte
tion is switched on, the solutionrn(X) of Eqs. ~4! and ~5!
with a5gp continues to assume a shape quite similar to
invariant measurer(X) mentioned above, but it is accomp
nied by intermittent peaks@see Fig. 5~b!# whose widths are
roughly given byKF. The situation remains almost the sam
whena differs slightly fromgp . If the effect of these peak
on the amplitude of the collective motion is more importa
than the change in the invariant measure caused by a s
deviation of a from gp , the statistical averageF will be
insensitive to the value ofa aroundgp . If the deviation ofa
from gp becomes too large, however, the correspondingF
will be dominated by the influence of other golden valu
corresponding to other hills.
Hills formed in the manner described above are consis
with hills obeying the growth relation of the widthW ~see
Fig. 4!. Further, the above reasoning applies to every gol
value. Thus every golden value can be considered as a
golden value around which its own hill is formed. This co
clusion may appear to be inconsistent with the fact that i
given hill there are an infinite number of golden values. A
tually, for a givenK, most golden values in a given hill ar
not key golden values. We have found that around such
value, the amplitude F for these golden values does not o
the scaling law of F. This will be discussed in Sec. IX. It
now clear that collective motion is not confined only to v
ues corresponding to golden values. It occurs over the in
vals corresponding to hills existing around these golden v
ues.

VIII. COLLECTIVE MOTION IS DOMINANT: PROPERTY
AROUND VALLEYS

The hilly structure seen in Fig. 2 can be understood
analyzing the structure ofF in the valleys between two
neighboring hills. From this analysis we are able to conclu
that collective motion occurs generically in thea-K plane.
We specifically investigate the parameter dependence ofF in
valleys. As is seen from Fig. 2, we find that some silv
values lie precisely at the minimum points ofF in the val-
leys. Figure 6 shows that when the value ofa is near a silver
value sp , we obtain the following relation for sufficiently
small values ofK:

F}ua2spub ~b.1!. ~8!

It is clear from this relation that collective motion disappea
only at the pointa5sp @13#. This relation seems to hold fo
any silver value when the value ofK is sufficiently small.
This fact strongly suggests that the total measure of value
a at which collective motion does not exist is vanishing
small because the total measure corresponding to silver
ues is vanishing, although they exist densely on the line oa.
The remaining values ofa are characterized by hills tha
extend from key golden values with widths that increase w
K. Hence the occurrence of the collective motion is dom
nant over the parameter space ofa. Because of the scaling
law existing at golden values, this situation holds even
vanishingly small values ofK.
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IX. MERGING OF HILLS

Figure 6 also indicates that the valleys disappear for s
ficiently large values ofK. For each silver value, we find
critical valueKc for the disappearance of the correspondi
valley. WhenK exceeds such aKc , a valley that existed at a
certain silver value up toK5Kc suddenly disappears. Thi
occurs because two hills lying on either side of this silv
value merged into one atK5Kc . As a result, the amplitude
F at this value ofa exhibits a sudden increase. As describ
above, each hill possesses a key golden value. After
merging of two hills, one of the two key golden values cha
acterizing the previously existing hills, saygp1

, ceases to be

a key golden value, while the other persists. As a result thK
dependence ofF at a5gp1

changes and typically comes t
behave as illustrated in Fig. 7. We see in this figure that

FIG. 6. Amplitude of collective motionF near a silver values7

displayed on a logarithmic scale, whereDa[a2s7. The picture on
the left is for values ofa smaller thans7, while that on the right is
for a larger thans7. For smallerK, F}uDau, so thatF decays to
zero asa→s7. On the other hand,F remains finite for largerK over
the range ofa in this figure.

FIG. 7. KF vs K21 for two golden values whose values ofa
differ only slightly. The plotting method is the same as that for F
3. The value ofg4 is the same as that given in Fig. 2. Each gold
value is regarded as a key golden value, whileK is sufficiently
small. However, only the collective motion at one golden valueg4

is characterized by the same scaling law in both the small-K and
large-K regions. TheK21 dependence ofKF at the other golden
value g17 changes and this dependence comes to resemble th
g4. This implies that the hill associated withg4 absorbs the hill
associated withg17. Thus the golden valueg4 continues to be a key
golden value, whileg17 ceases to be such.
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K dependence ofF(g4) is maintained, while that ofF(g17)
changes aboveKc , where it comes to exhibit aK depen-
dence similar toF(g4).

The merging of two hills leads to a sudden expansion
the width of one of the hills, accompanied by the disappe
ance of the other. If a hill associated with some key gold
valuegp successively absorbs the neighboring hills with t
increase ofK, then the widthW of this hill also grows suc-
cessively. On the other hand, we have already seen in F
a growth law for W. These observations suggest that t
values of Kc characterizing the disappearance of valle
around silver values should be correlated with our grow
law for W. In the case of Fig. 8, the golden valueg4 persists
as a key golden value over a wide range ofK. We calculated
the values ofKc for a series of silver values. Each of the
silver values was chosen in such a way that in a certain ra
of K it lies at the minimum point between the hill associat
with g4 and a neighboring hill. In fact, there should ex
many more silver values of this kind for a giveng4 than
those displayed in this figure. We see from this figure t
the value ofKc for a given silver value depends on the d
tance of this silver value fromg4 and that this dependence
consistent with the growth law forW seen in Fig. 4. In many
cases, merging occurs between hills of vastly different siz
In this case, the collective motion characterizing the sma
hill seems to be replaced suddenly by that for the larger o
In such cases, the hill width may appear to grow alm
continuously.

From our study presented so far, the hilly structure of
amplitudeF of the collective motion can be understood. Th

FIG. 8. The pointKc at which the minimum point in the valley
closest to the key golden valueg4 vanishes is investigated. Her
Da5a2g4. The value ofg4 is the same as that given in Fig. 2
Note that the horizontal scale is logarithmic. The picture on the
is for the values ofa smaller thang4, while that on the right is for
larger values. When a minimum situated at the silver value dis
pears at someK5Kc , the width of the hill associated withg4

becomes expanded. The values ofKc for those valleys that disap
pear successively show a logarithmic dependence onDa. Although
this figure ignores many other valleys that are actually present
believe that the manner in which valleys disappear successive
consistent with the variation of the hill width withK shown in
Fig. 4.
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structure consists of a series of hills and valleys. Only a
minimum point ofF in each valley, collective motion disap
pears. Thus the hilly structure implies that under a giv
coupling strengthK the collective motion occurs inevitabl
for almost all values ofa. Furthermore, the following prop
erties for the collective motion are now clear: There is
scaling law for the amplitudeF, a growth law for the hill
width W, and a successive merging of hills resulting in
decrease in the number of the hills and hence the numbe
key golden values. Clearly these features are interrelated

X. PHASE DIAGRAM

We now consider a phase diagram of collective motion
thea-K21 plane from the viewpoint of the amplitudeF. For
each golden valuegp , we define a phase as the region of
hill ~defined by values ofF greater than some thresho
valueFth) associated with a certaingp . Here the definition
is meaningful only ifgp represents a key golden value. Sin
golden values exist densely, such a diagram will be split i
an infinite number of domains asK→0, each reducing to a
single point corresponding to a golden value. The extens
of each domain becomes larger with the increase ofK, as
implied by Eq.~7!, and this necessarily results in the succe
sive merging of domains, leaving only a few for sufficient
largeK. Thus our phase diagram resembles that for the ph
locking between oscillators. The latter is also characteri
by the merging and splitting of domains, in this case sy
chronized domains, referred to as Arnold tongues. We n
however, there is one property of our phase diagram
distinguishes it from that in the case of phase locking. In
present case, in theFth→0 limit, the domains of collective
motion comprise all but a measure 0 set of values ofa, even
for vanishingly weak coupling.

In Fig. 9 we show a blowup of the phase diagram th
contains only those domains of collective motion forgp with
p<11. The numerical procedure for obtaining this pictu
essentially follows that for Fig. 4. We determined the dom
for eachgp with a givenK first, displaying it as a painted
region of a. We then did the same for variousK, thereby

ft

p-

e
is

FIG. 9. Blowup of the phase diagram for the collective moti
in m-K21 space, wherem52 loga(22a) ~restricted in 2.82,m
,3.22). The value of theg4 in this figure is the same as that in Fig
2. Each domain filled with black has been determined from
calculation of the hill width associated with the correspondi
golden value. The golden values represented here aregp with p
<11. The neighboring domains overlap for larger values ofK. A
precise phase diagram split into an infinite number of doma
could be imagined as an extension of this figure.
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producing Fig. 9. Note that the domains separated for a g
K correspond to distinct hills with distinctgp . As expected,
a pair of neighboring domains merge at a certain value oK
at which a valley disappears. Thus the number of separ
domains decreases with the increase ofK. After several
merging events, we are left with only one painted dom
associated withg4.

XI. DISCUSSION: ANY UNIVERSALITY CLASS?

The foregoing arguments suggest that collective mot
occurs generically for arbitrarily weak coupling. Such a
sult seems to be closely related with some global proper
of the individual maps such as the topological arrangem
of golden values. It is our conjecture that the same con
sion holds for such globally coupled unimodal maps satis
ing u f 8(X)u.1 for any X. Although not reported in the
present paper, we also confirmed that a similar scaling
holds for a variety of mean fieldshn . From these studies it is
seen that the analytical approach by Ershov and Potapov@14#
gives estimated values ofF that are much smaller than thos
found in the present numerical results.

For the case not satisfying the above condition
u f 8(X)u, for instance, globally coupled logistic maps, th
present argument is expected to be qualitatively applica
under some restrictions. This is mainly because here go
values are located in windows and the stability of a perio
orbit there causes the so-called clustering phenomena@5#,
which are beyond the present arguments. On the other h
collective motion resembling the present motion is also
served for globally coupled logistic maps, where the am
ce
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tude of this collective motion is proportional to the couplin
strength @11#. An analytical study@15# also supports this
idea. These suggests the existence of a certain scaling la
F that implies the qualitative applicability of our argumen

Collective motion with a quasiperiodic property is als
observed in spatially extended systems@6#. Since the GCM
is an idealized model of a long-range coupled system, it d
not take into account anything resembling spatial extens
We wish to be able to find a way to include the effects
spatial degrees of freedom in the description of collect
motion. It is hoped that the discovery presented here will
relevant to such spatially extended systems also.

We have concentrated on the amplitudeF of the collec-
tive motion without going into its phase-space structure. T
scaling relation discovered for this nonspecific quantity ho
over a wide range of parameter values for which the type
collective motion changes in various ways. Based on t
point, we suspect that the collective motion discussed in
present paper might possess quite unusual properties
shared by conventional low-dimensional dynamical syste
Detailed numerical study of the nature of various types
collective motion, which is now in progress, will clarify thi
point.
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